Convergence Analysis on Iterative Methods for Semidefinite Systems

نویسندگان

  • Jinbiao Wu
  • Young-Ju Lee
  • Jinchao Xu
  • Ludmil Zikatanov
  • L. ZIKATANOV
چکیده

The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sufficient conditions for the energy norm convergence for iterative methods. Some illustrative examples for the conditions are also provided. The sharp convergence rate identity for the Gauss-Seidel method for the semidefinite system is obtained relying only on the pure matrix manipulations which guides us to obtain the convergence rate identity for the general successive subspace correction methods. The convergence rate identity for the successive subspace correction methods is obtained under the new conditions that the local correction schemes possess the local energy norm convergence. A convergence rate estimate is then derived in terms of the exact subspace solvers and the parameters that appear in the conditions. The uniform convergence of multigrid method for a model problem is proved by the convergence rate identity. The work can be regraded as unified and simplified analysis on the convergence of iteration methods for semidefinite problems [8,9]. Mathematics subject classification: 65F10, 65N22, 65N55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

On the convergence of splittings for semidefinite linear systems

Recently, Lee et al. [Young-ju Lee, Jinbiao Wu, Jinchao Xu, Ludmil Zikatanov, On the convergence of iterative methods for semidefinite linear systems, SIAM J. Matrix Anal. Appl. 28 (2006) 634–641] introduce new criteria for the semi-convergence of general iterative methods for semidefinite linear systems based on matrix splitting. The new conditions generalize the classical notion of P-regulari...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

On Necessary Conditions for Convergence of Stationary Iterative Methods for Hermitian Semidefinite Linear Systems

In an earlier paper [SIAM J. Matrix Anal. Appl. vol. 30 (2008), 925–938] we gave sufficient conditions in terms of an energy seminorm for the convergence of stationary iterations for solving linear systems whose coefficient matrix is Hermitian and positive semidefinite. In this paper we show in which cases these conditions are also necessary, and show that they are not necessary in others.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008